MULTI-CLOUD RESERVOIR DESIGN
WITH STANDARD FORMAT DATASETS

Jay Hollingsworth – CTO

August 28th, 2019
DISCLAIMER 2019

The contents of this presentation are for informational purposes only. Halliburton** makes no representation or warranty about the accuracy or suitability of the information provided in this presentation and any related materials. Nothing in this presentation constitutes professional advice or consulting services. No contractual relationship with Halliburton is established by attending or viewing this presentation. No rights to intellectual property of Halliburton are granted through this presentation. The opinions expressed in this presentation are those of the author and do not necessarily represent the views of Halliburton. **Halliburton means Halliburton Energy Services, Inc., Landmark Graphics Corporation, and their affiliates.
Agenda

» Energistics & Standards
» The Reservoir Design Challenge
» Solution and Demo Description
» Trusted Data
Our Industry Understands Standards

» We have standards for practically everything:
 • Offshore structures
 • Tubular goods
 • Valves and wellhead equipment
 • Drilling structures and equipment
 • Well cement
 • Drill, completions and fracturing fluids
 • Well control equipment
 • Subsea production equipment

» We also have data standards…
How Are Standards Developed & Made Available?

» Energistics is not a vendor. We are a non-profit industry organization.

» We have served the industry for nearly 30 years

» Our 110+ members include leading E&P companies, oilfield service companies, software vendors, system integrators, & regulatory agencies

» Our standards are the result of open collaboration between our members, through industry workgroups facilitated by Energistics

» In short, the standards are created by the industry and for the industry

» They are freely available from Energistics
Key Members: Global Impact, Industry-Wide
Energistics Spectrum of Upstream Data Standards

UNIVERSAL INTEROPERABILITY

<table>
<thead>
<tr>
<th>DRILLING/WELL</th>
<th>PRODUCTION</th>
<th>RESERVOIR</th>
</tr>
</thead>
<tbody>
<tr>
<td><WITSML/>™</td>
<td><PRODML/>™</td>
<td><RESQML/>™</td>
</tr>
</tbody>
</table>

- Defined by collaboration between member SMEs
- Coherent set of standards to eliminate data ‘friction’
- Goal is to cover all key activities in upstream
- Shared components enable cross-functional workflows
- ETP = new ‘Netflix-like’ capability for streaming data
Well Information Standards: WITSML™

» Consistent high-quality transfer of wellbore and drilling-related data
 • Real-time data transfer
 ✓ Reference objects – Well and Wellbore
 ✓ Growing objects – Log (time, depth), Trajectory, Mud Log, etc.
 ✓ Snapshots in time – with “report” information
 • Real-time monitoring of drilling operations
 • Move well-related data between applications
 • Only vendor-neutral analytic (data lake) format
 • Archival history of drilling operations
Production Standards: PRODML™

» Consistent, high-quality transfer of production-related data

• Data transfer to production surveillance centers
 ✓ Real-time measurements from sensor through analysis
 ✓ Static configurations of production and surface facilities
 ✓ Regulatory and partner reporting
 ✓ Movement of analyses from service company to operator

• Move production-related data among databases and applications

• Only vendor-neutral analytic (data lake) format

• Archival history of production operations
Reservoir Standards: RESQML™

» High fidelity transfer of earth model data across applications and vendors

• Sharing earth model data across asset teams
• Movement of data through the seismic to simulation workflow
• All kinds of grids
• Traceability via metadata
• File-format-neutral archival of earth model at key decision points
• Only vendor-neutral analytic (data lake) format
The Reservoir Design Challenge
The Reservoir Design Challenge

» Very large number of wells
» Increasingly multi-disciplinary workflows
» Data shared (partners, data rooms, vendors)
» Diversity of software solutions
» Diversity of cloud platforms - multinimbus
» Prevailing formats (e.g. LAS) are simple but limited
» Verify data (takes time) or trust it (blind)? Difficult choice!
The Good, the Bad and the Ugly
A Standards-based Solution – EPC + HDF5

» EPC – Energistics Packaging Convention
 • Specialize the Open Package Conventions (previously Microsoft)
 • One package contains all the files (zip)
 • XML based
 • Explicit mapping of relationships between files
 • Compressed

» HDF5 – Hierarchical Data Format
 • Widely used in scientific computing
 • Efficient for large vectors or arrays
 • Used for HPC, but we use as a transfer medium
A standard solution

EPC (compressed XML)
- Data
- Relationships
- Metadata

HDF5
- Large data objects
- Hierarchical

Source System

Destination System

WRITE

READ
Benefits of completeness

» The package (2 files) contains the involved dataset information
 • Reference information mandatory and standardized
 • Relationships managed explicitly

» For the receiving party
 • Assurance that all relevant data is there, and properly referenced
 • Minimizes data verification workload
SEG 2019 - Live Demo As Proof of Concept

» Goal: show viability of standardized file transfers
» Dataset: complete dataset of GoM field
» Software: 6 commercial packages
» Workflow: enrich reservoir model, simulate and display

Note: each software system can perform much larger parts of workflow
RESQML 2.0.1 Demonstration

Grid creation

Facies modeling

Fracture porosity

Results visualization

Reservoir simulation

Property calculation
Execution of the PoC Demo

» Each application read the transfer package
» A transformation or editing of the data was performed
» The new version of package was exported
» One step involved transfer to a separate cloud and back
» In all the demonstration lasted 45 minutes
» Any step could have been skipped or substituted
Trusted Data
Critical Elements of Trusted Data

» Establishing trust/confidence in the data before acting on it

» Data Assurance (much more than data quality)
 • Trusted source
 • Sensor operating in range
 • Properly calibrated
 • Compliance with contractual provisions
 • Transmitting Data Assurance among users/systems

» Data Provenance (audit trail)
 • What has been done to the data?
 • What applications and what parameters?
 • Identify the users.
So How do Energistics’ Standards Help?

» Energistics’ WITSML, PRODML and RESQML standards all include:
 • Data Assurance object – supports data governance processes for data analytics
 • Activity object – tracks what has been done with the data

» Data Assurance uses business rules between data provider and consumer
 • Data is checked for compliance and exceptions automatically flagged & sent

» Activity Object
 • Captures parameter picks, applications & users to convey prior history of data

» Benefit
 • Reduces time and resources needed in data preparation and validation
 • Establishes trust that data is fit for purpose
 • Data does not need to be perfect or complete
Will You Always be Able to Access Your Data?

- O&G data has relevance spanning several decades
- What may seem of little use today may be critical tomorrow
 - Information Technology changes rapidly
 - Application vendors update apps and data structures frequently
 - Today’s dominant vendors may be replaced by others 15 years from now
- Archiving is therefore not just a physical problem
 - The format of an archive is the dominant risk
- An industry-defined and industry-sponsored standard is the only solution
 - Self-descriptive and always decipherable
 - Inclusive of all metadata needed to properly understand the data
 - By archiving in Energistics standards, the data will be “future-proofed” and readable
Conclusions

» Reservoir datasets are increasingly sophisticated
» Solutions require a diversity of software solutions
» Cloud-based software and data storage are more common
» More analytics and other (un-) supervised data ingestions
In Closing
THANK YOU!

www.energistics.org