Benchmarking: Use of Clustering for Offshore Well Construction

Flávia Cristina Petersen
Antonio Carlos de Andrade Brito
Claudio Benevenuto de Campos Lima
Manoela da Rocha de França
Shelly Cristiane D Avila Medeiros

August 2019
“The contents of this presentation are for informational purposes only. Halliburton** makes no representation or warranty about the accuracy or suitability of the information provided in this presentation and any related materials. Nothing in this presentation constitutes professional advice or consulting services. No contractual relationship with Halliburton is established by attending or viewing this presentation. No rights to intellectual property of Halliburton are granted through this presentation. The opinions expressed in this presentation are those of the author and do not necessarily represent the views of Halliburton. **Halliburton means Halliburton Energy Services, Inc., Landmark Graphics Corporation, and their affiliates.”
Index

1. Motivation of benchmarking
2. Methodology applied
3. Case Studies
4. Automatic well allocation in Clusters
5. Conclusions
Index

1. Motivation of benchmarking

2. Methodology applied

3. Case Studies

4. Automatic well allocation in Clusters

5. Conclusions
Goals

Clustering

Benchmarking

Wells

Experts

Well Project Improvement

Well Operation Improvement
Wells

70 variables

Open Wells

Geographic Information System
Variables selection

Most relevant variables for well clustering

<table>
<thead>
<tr>
<th>TVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos Salt Interval</td>
</tr>
<tr>
<td>Max Mud Weight</td>
</tr>
<tr>
<td>Salt Interval</td>
</tr>
<tr>
<td>Drilled Interval</td>
</tr>
<tr>
<td>Mud Weight at TD</td>
</tr>
<tr>
<td>Total Number of Casing</td>
</tr>
<tr>
<td>Final bit Size</td>
</tr>
<tr>
<td>Max Angle</td>
</tr>
<tr>
<td>Complex Ratio</td>
</tr>
</tbody>
</table>
Variables Selection Analysis

Most relevant variables for well clustering:
- TVD
- Pos Salt Interval
- Max Mud Weight
- Salt Interval
- Drilled Interval
- Mud Weight at TD
- Total Number of Casing
- Final bit size
- Max Size
- Complex Ratio

Variables selected to fit the model as expected by the expert:
- TVD (m)
- Pos Salt Interval
- Max Mud Weight
- Salt Interval
- Drilled Interval
- Mud Weight at TD
- Total Number of casing
- Final bit size
- Max Angle
- Complex Ratio
Index

1. Motivation of benchmarking
2. Methodology applied
3. Case Studies
4. Automatic well allocation in Clusters
5. Conclusions
Clustering

- K-means
- Fuzzy C means
- Kmedoid
Clustering

K-means

Fuzzy C means

Kmedoid
K-means - How to find the ideal K

Silhouette Score Methodology:

\[
\text{Silhouette Score} = \frac{b-a}{\max(a,b)}
\]
K-means - How to find the ideal K

Ilustration of the method:

Silhouette Score = \frac{b-a}{Max(a,b)}

K=2

K=3

K=4

K=5
K-means - How to find the ideal K

Silhouette Score

\[\text{Silhouette Score} = \frac{b-a}{\text{Max}(a,b)} \]

For this work:

- **INTRA-CLUSTER**
 - C1
 - C2
 - C3

- **NEAREST-CLUSTER**
 - C1
 - C2
 - C3
K-means

- Simplest unsupervised learning algorithm

Collect / Choose variables → Choose K → Validate Result → Result
Clustering

K-means

Fuzzy C means

Kmedoid
Fuzzy C Means

- Similar to K-MEANS
- Advantage of enlightening the degree of relevance of each well in each cluster.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>Winner Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Well</td>
<td>0.563</td>
<td>0.342</td>
<td>0.095</td>
<td>C1</td>
</tr>
<tr>
<td>Y Well</td>
<td>0.321</td>
<td>0.572</td>
<td>0.107</td>
<td>C2</td>
</tr>
</tbody>
</table>
Clustering
K-Medoids (Currently in use)

- One of the wells to be the “Well Type” and not just one point between the sample wells
Index

1. Motivation of benchmarking
2. Methodology applied
3. Case Studies
4. Automatic well allocation in Clusters
5. Conclusions
Case Study 1 - External Benchmarking

Comparison of similar wells between Petrobras and operator X

<table>
<thead>
<tr>
<th>Operator</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrobras</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>7</td>
<td>16</td>
<td>23</td>
</tr>
</tbody>
</table>
Case Study 2 - Internal Benchmarking

- Validation Pre Salt clusters (defined by specialists)
Case Study 2 - Internal Benchmarking

- **Validation Pre Salt clusters (defined by specialists)**

Cluster 1 - Duration

<table>
<thead>
<tr>
<th>Field</th>
<th>Wells</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>116</td>
<td>0</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>33</td>
<td>0</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>26</td>
<td>23</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Cluster 2 - Duration

- P90(Y): 14.86
- P10(Y): 7.02

Cluster 3 - Duration

- P90(Y): 16.34
- P10(Y): 5.37

Previous knowledge
Index

1. Motivation of benchmarking
2. Methodology applied
3. Case Studies
4. Automatic well allocation in Clusters
5. Conclusions
Allocation / Prediction of new Wells

New Well

Cluster 1 Cluster 2 Cluster 3

10 Most relevant variables

Cluster 3
Index

1. Motivation of benchmarking
2. Methodology applied
3. Case Studies
4. Automatic well allocation in Clusters
5. Conclusions
Conclusions

- More assertive analysis, improving the definition of our drilling duration goals
- Propagation of Benchmarking use for well concept design
- The present approach has a good practical application, as presented in the case studies
- Future: Clusterization and automatic allocation for Completion and Workover. Also, use of geological variables.

“Data is the new oil”

Clive Humby
Questions?

- Any further questions, please contact Flávia Petersen
 flaviapetersen@petrobras.com.br
Your feedback is very important to us. Please open the LIFE2019 app to answer a few short questions on this presentation.