Geological Context - The Missing Element in the Interpretation Domain

Frans van Buchem
DISCLAIMER 2019

The contents of this presentation are for informational purposes only. Halliburton** makes no representation or warranty about the accuracy or suitability of the information provided in this presentation and any related materials. Nothing in this presentation constitutes professional advice or consulting services. No contractual relationship with Halliburton is established by attending or viewing this presentation. No rights to intellectual property of Halliburton are granted through this presentation. The opinions expressed in this presentation are those of the author and do not necessarily represent the views of Halliburton. **Halliburton means Halliburton Energy Services, Inc., Landmark Graphics Corporation, and their affiliates.
'It is our experience that the use of bench-marks, placed in a strong geologic context with specific examples, has been effective at stretching technical teams to consider alternatives and thereby develop a more objective characterization that leads to better business decisions and results.'

(Rudolph & Goulding, 2017, AAPG Bull.)
Set up

- **The Challenges and the Vision**
 - Segmented workspace and inadequate workflows
 - Geological age and stratigraphic organisation

- **Context examples for Cretaceous petroleum systems**
 - Large, global lithological and reservoir trends
 - Cretaceous sea level – a new synthesis
 - Linking exploration & production scales

- **Conclusions**

Acknowledgements: Dave Ray, Gareth Carroll, Andy Davies, Benjamin Greselle, Owen Sutcliffe, Mike Simmons
Challenges

- The End2End life cycle is segmented (tools, departments, disciplines, models)
- Consequences: loss of data access, time, insights, ‘old’ models, wrong analogs
Challenges

- Petroleum geological data interpretation deals with big variations in:
 - Scale (plug – seismic)
 - Density of information

 - Impact on:
 - Consistency
 - Accuracy
 - Bias
 - Risk evaluation
Hierarchical organisation of stratigraphic record

Predictive Stratigraphic Architecture

- Link between Exploration and and Production scales
- Improved prediction of petroleum system elements
- Improved prediction of reservoir characteristics
Geological age

- Geological age is the single most important factor to enable prediction, bring in context, and identify analogs
- Facilitate the access and visualisation of geological age in the interpretation domain (well log correlations, seismic)
- Make this process more efficient by applying machine learning techniques (Assisted Biostratigraphic Interpretation)

- Neftex global sequence stratigraphic time framework
Vision

- Provide readily accessible geological context for End2End interpretation workflow
 - Geological age as the enabler
 - Common, shared and labelled data
 - Create opportunities for Machine Learning and Data science
 - Game changer for new generation of interpreters

- Breakdown of artificial boundaries (e.g. exploration and production)
 - More effective use of data and insights, improved corporate communication

- Guide for software and database developments
Examples of geological context for cretaceous petroleum systems

- Global lithological trends

- Sea level and climatic control (foundation research)

- Global sequence stratigraphic patterns
Mesozoic lithological trends

- Neftex® Insights Database
- Globally applied sequence stratigraphic model
- Interrogation at 3rd order sequence level of geology and petroleum system elements

1st order context
Mesozoic lithological trends and reservoir distribution

- Neftex® Insights Database
- Globally applied sequence stratigraphic model
- Interrogation at 3rd order sequence level of geology and petroleum system elements

1st order context

- Transgression of new shelf areas
 - Expansion of carbonates
 - Peaks of clastics
- Pangea breakup
- Pangea supercontinent

Clastic vs. Carbonate Fields

Data base N= 8500
Cretaceous lithological trends

Lithological, Biotic & Oceanographic Events

2nd order context
Cretaceous lithological trends and reservoir distribution

Lithological, Biotic & Oceanographic Events

- **Abundant Chalk**
- **Anoxic Events**
- **Biotic Events**

Clastic vs. Carbonate Fields

2nd order context

- **Late Cretaceous**
 - Carbonate dominated
 - Higher order fluctuations
 - More variation in field trend

- **Early Cretaceous**
 - Clastic dominated
 - 2nd order fluctuations
 - Synchronous with field trend
Cretaceous eustatic sea-level curves compared

- remarkable difference in amplitude and frequency

<table>
<thead>
<tr>
<th>Maastrichtian</th>
<th>Campanian</th>
<th>Santonian</th>
<th>Coniacian</th>
<th>Turonian</th>
<th>Conocomanian</th>
<th>Albian</th>
<th>Aptian</th>
<th>Barremian</th>
<th>Hauterivian</th>
<th>Valanginian</th>
<th>Berriasian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late</td>
<td>Early</td>
<td></td>
</tr>
</tbody>
</table>

Haq 2014 - Global (minimal documentation)
Miller et al. 2004 - New Jersey Coastal Plain
Sahagian et al. 1996 - Russian Platform
Impact of sea level fluctuations on stratigraphic architecture

- Knowledge of amplitude and frequency of sea-level change is essential for correct prediction at exploration and production scales.

- Sea-level fluctuations

- Stratigraphic architecture

- Chronostratigraphy
Establishing realistic magnitudes – a literature survey

160 publications screened of which 37 represent unique and suitably detailed records:
- 800+ individual estimates of absolute sea-level rise and fall
- Focus on short-term change (<3 Ma) to exclude local tectonics

(in Ray et al., 2019)
Data evaluation – trends in amplitude variation

Max. amplitude range

Screening of database
- Geological screening
- Geostatistical analysis

Significant variations
- Max. amplitude 5 to >65m
- Stage level bins

4 Main trends
- Berriasian - Valanginian
- Hauterivian - Aptian
- Albian – Coniacian
- Santonian - Maastrichtian
Climate change

• Climate as a driver of sea level amplitude variations

• Impact on prediction of distribution and nature of reservoirs

• Geological context!

(Ray et al., 2019)
Climatic change

- Climate as a driver of sea level amplitude variations
- Impact on prediction of distribution and nature of reservoirs
- Geological context!

(Ray et al., 2019)
Cenomanian global sequence time framework

<table>
<thead>
<tr>
<th>Stages</th>
<th>Ammonites</th>
<th>δ^{13}C-isotopes</th>
<th>NEFTEX Sequences</th>
<th>CASE STUDY LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turonian</td>
<td>C. woolgeri</td>
<td>K120</td>
<td>1 2 3 4 5 6</td>
<td>SB MFS</td>
</tr>
<tr>
<td></td>
<td>M. nodosoides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. devonense / W. coloradoense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. gesslini</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. guentangeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. jukesbrownei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. rhotomagense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. tenebricosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenomanian</td>
<td>M. dixoni</td>
<td>K150</td>
<td>SB SB SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. macroleptus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. americanus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. mantelli</td>
<td>K140</td>
<td>SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. muller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. comatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. hasei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. carcinense s.z.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albian</td>
<td>A. bracensis</td>
<td>K130</td>
<td>SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. rosea</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Globally age calibrated stratigraphic surfaces
- Insight in amplitude and frequency of sea-level fluctuations

Late Cenomanian Paleogeography and case study locations
Cenomanian carbonate reservoirs of the Arabian Plate

Regional seismic lines
intra-shelf basin morphology

Log, core and outcrop controlled facies model
- organic-rich intrashelf basins (SR)
- grainy, rudistic margins (reservoir)

2D & 3D outcrops displaying depositional geometries and stacking patterns

(e.g. Droste, 2010; van Buchem et al., 2002; Razin et al., 2010)
Cenomanian reference model

Stratigraphic architecture

- Predictable position petroleum system elements
- Importance of organic-rich intra-shelf basins

(van Buchem et al., 2011)

C-isotope reference curve and events

(K-120)

(K-130)

(K-140)

(K-150)

(ACBE)

(MCE)

(CTBE)

(Wohlwend et al., 2018)
Mid Cretaceous Seaway – US and Canada

Paleoceanography
- Connection of Mid Cretaceous Seaway re-established in Cenomanian

Prolific plays
- Eagle Ford ressource play
- Conventional clastic plays
 - Woodbine Gp. - East Texas
 - Tuscaloosa Fm. – Louisiana
 - Dunvegan Fm. – W. Canada

(Minisini et al., 2018)
Eagle Ford Group, W. Texas – carbonate/marl shelf

(Donovan et al., 2016)
Eagle Ford – paleoceanography

- Oceanographic control of depositional conditions
- Causing major facies changes

(Oldrett et al., 2015, 2017; Minisini et al., 2018)
Oceanographic control of depositional conditions
• Subtle expression of sequence boundaries in distal shelf setting
• Offset from facies changes

(Eldrett et al., 2015, 2017; Minisini et al., 2018)
Woodbine Group, E. Texas – siliciclastic margin and reservoir

X-section Eastern Margin of East Texas Field

- East Texas Field produces from Dexter Reservoir unit since 1930

(Denne et al., 2016)
Woodbine Group, E. Texas – re-interpretation of siliciclastic margin

- East Texas field reinterpreted as Incised Valley Complex – consistent with global pattern (K-130)!
- Significant implications for facies/reservoir relationships, well planning and in-place volumes
Chronostratigraphic scheme Texas- Louisiana Shelf

- Geological context helps to identify the main controlling factors
Cenomanian stratigraphic patterns – context at the global scale

- The local variation on the global theme
- Concepts and analogs
- Link between exploration and production scales
- Improved prediction of reservoir, seal and source rocks

• Context at the global scale – concepts and analogs
Workflow in 3 steps:

- Geological interpretation
- Conceptional model
 * in time and space
 * iterative, multi-proxy
 * integration
- Petroleum geological interpretation & models
 * for economic decision making
GEOLOGICAL CONTEXT

- Geological time
- Paleogeography
- Gross Depositional Environ.
- Sequence stacking patterns
- Local vs Global controls

- Promotes integrated work
- Improves corporate knowledge capture and communication
- Breaks down silos

STRATIGRAPHIC WORKSPACE

1. Geological interpretation tools
 - Seismic
 - Attribute analysis
 - Seismic geomorphology
 - Synthetic seismic space
 - Wells
 - Stratigraphy
 - Lithology & facies

2. Conceptual geological model
 - Depth and Time windows
 - Multi-proxy, iterative, integration process

3. Petroleum geological analysis
 - Drilling model
 - Rock mechanical model
 - Reservoir model
 - Exploration model
 - Basin model
 - Economic decisions

© 2019 Halliburton
Thank You
Your feedback is very important to us. Please open the LIFE2019 app to answer a few short questions on this presentation.