DecisionSpace® G1 Edition

OVERVIEW

DecisionSpace® G1 Edition delivers the decision-making power of one complete geoscience interpretation workflow, and is the 2014 World Oil Winner for Best Data Management and Application Solution. G1 Edition offers a new way of deploying the award-winning DecisionSpace® Geoscience technology: geophysical and geological interpretation and earth modeling with a zero-configuration OpenWorks® compliant, embedded database. G1 Edition provides a complete geoscience reservoir characterization workflow across geologic and geophysical interpretation, mapping, and earth modeling for asset teams that require an easy to deploy but still full-featured software suite.

G1 Edition delivers traditional geoscience interpretation tools and Landmark’s award-winning Dynamic Frameworks to Fill® software technology, enabling a powerful workflow that delivers a step change in efficiency for structure and property mapping. Geoscientists can concurrently build a sealed structural framework as they interpret, filling the framework with facies and deterministic reservoir properties, and then creating accurate maps in minutes. Updates dynamically populate through the model as new interpretation is done or as new data are added, eliminating manual, time-consuming tasks such as fault-polygon digitizing and surface regridding.

DecisionSpace® G1 Edition is a component of the DecisionSpace Geosciences platform, a unified visualization, interpretation, and modeling workspace where asset teams can collaborate effectively to evaluate and develop assets. The DecisionSpace Geosciences platform delivers a true interpretation environment with unprecedented integration across multi-domain workflows and data types—all on the award-winning, data management foundation of the OpenWorks® database.

KEY FEATURES

- Complete geoscience work environment, from data load to geology to geophysics to earth modeling to volumetrics and final prospect map...all in a portable standalone package.

- Framework modeling and volumetrics eases prospect evaluation by reducing evaluation time and increasing interpretation accuracy.

- A unified interpretation, visualization and modeling workspace built on OpenWorks® Project Management Database.

The complete workflow in a portable standalone package – all data and interpretations in one place. Take it to the rig while drilling, update on the rig, and make decisions on the rig.
BENEFITS

Complete Workflow

DecisionSpace® G1 Edition enables an uninterrupted geoscience workflow from geologic interpretation through geophysical interpretation and into earth modeling yielding accurate structure and property maps and critical volumetric estimates. All key supporting technologies necessary to complete the workflow, such as well-tie, velocity modeling, petrophysical log calculations, and earth modeling, are integrated into one standalone package.

![Image of geoscience workflow](image)

Mapping, interpretation and earth modeling in a single unified work environment reduces the decision time and the drilling risk by having all data in one place whether on the rig, in the office, wherever the decisions are made.

Accelerates Interpretation and Reduces Rework

Traditional framework building and mapping tools require a series of depth conversion and gridding steps for faults, well picks, and seismic horizons that quickly get outdated as new seismic is acquired and wells are drilled. With Dynamic Frameworks to Fill® workflows, each map is tied to the original interpretation and is updated as users interpret horizons and faults. This enables the interpreter to identify inconsistencies in the interpretation much earlier in the cycle. The benefit: higher confidence, reduced risk, and more time to assess the play.

Accurate Reservoir Characterization and Measurement of Uncertainty

The earth modeling workflow is optimized to promote integration, usability and science, from building geocellular models directly from a sealed structural framework, such as Dynamic FrameWorks to Fill® workflow, through intuitive facies and petrophysical modeling, to static volumetrics and uncertainty. The application combines an intuitive design, along with innovative facies control and advanced techniques like lithology proportion mapping and variogram analysis. Advanced geostatistical algorithms available natively in the application, including Pluri-Gaussian, Sequential Gaussian and Sequential Indicator, enhance the horsepower of this solution.
Mobility
When traveling to rig sites, data rooms, remote offices, and partner meetings, geoscientists must still be productive and support the team back in the office. Because DecisionSpace® G1 Edition is built on the industry-leading OpenWorks project data management structure, geoscientists can take their projects on the go.

FEATURES

Unified 1D/2D/3D Workspace
Interpretations in log, map, section, and cube views are dynamically linked. Geologic data can be interpreted in the context of seismic data and geophysical interpretations. Windows can be configured, docked, and undocked.

![Image](image.png)

The unified 1D/2D/3D workspace gives the flexibility of working with a single well, multiple wells with 2D seismic or a full 3D volume in either time or depth. Determining the best target points are easily visualized with overlapping attributes as seen in this image.

GIS Integration
Display geo-referenced images and ESRI shape files in the context of the interpretation. Any image that can be displayed can be used as a background for interpretation.

Dynamic Time-Depth Conversion
Geoscientists can dynamically switch between time and depth domains using a velocity model generated in DecisionSpace® G1 edition or any externally created velocity stored in the database. This enables a new workflow where wells can be interpreted in depth and the seismic can be interpreted in time, and the framework can be created in either time or depth and updated without any manual depth conversion process.
Traditional Geologic Interpretation Tools

- Log correlation in section and 3D views
- Pick tops, faults, intervals, and lithology
- Hang tops on one or many surface picks
- Select and drag curves for quick correlation
- Raster log display
- Cross-sectioning along seismic, point-to-point, well-to-well, or along the wellbore
- True Stratigraphic Thickness (TST) and True Vertical Thickness (TVT) options
- Maps and bubble maps on production or point-set data
- Thematic mapping
 - Log signature posting
 - Stratigraphic column creation

Well Templates

Set up well templates with OpenWorks® data for log curves, production, pressure test, images and raster logs, synthetics, lithology, well intervals, perforations, casing, liner, or stratigraphic unit and attributes.

Well Display

Well-specific layouts enable user-defined display parameters for different well displays in the same view. The Display Property Editor enables user-defined display parameters that are specific to any object.

Log Calculator

Basic petrophysics tools for the geoscientist offer user control of curves for pay, lithology, and facies. Options include user-defined log calculations and an equation toolkit with standard petrophysical equations.

ZoneManager™ Software

ZoneManager™ software enables very efficient unit-based reservoir characterization workflows. Users can relate seismic, petrophysical, hydrocarbon production and any other ad hoc attributes for wells zones in the project, to understand and validate which critical parameters affect successful production.

Production Data Analysis

DecisionSpace G1 software allows users to perform decline curve analysis, which generates a prediction of estimated ultimate recover on a well-by-well basis and predicts production life span based on economic cut offs. This information can be further analyzed using ZoneManager software.

Integration

The structural Dynamic Frameworks to Fill models feed automatically into 3D geocellular-based, geostatistical property distribution found in DecisionSpace® Earth Modeling. Similarly, DecisionSpace G1 Edition software is tightly integrated with DecisionSpace Well Planning software to interactively develop, in-context, full-field well plans.
Dynamic Frameworks to Fill® Workflow

A structural framework topology engine enables sealed framework construction for user interpretation. Using classic map-making principles, outlined in Tearpock and Bischke, input data is independently gridded in the context of individual fault-block domains, projected into the fault planes, and truncated. The software more accurately defines how fault and horizon boundaries relate to one another. High-resolution sealed frameworks can be built quickly using tops, seismic, and conformance technology. The shared framework is dynamically updated as interpretations of new data are made. Presentation-quality maps for all layers and properties become a byproduct of the sealed framework and can therefore be created in minutes without manual fault-polygon digitizing and regridding.

The Dynamic Frameworks to Fill workflow includes:

- Fault networking, unconformity trimming, and auto-generation of fault polygons
- Automatic integration of faults and unconformities
- Interactive horizon clean area and intersection editing
- Property mapping from interval and log data and use of framework to define intervals

Dynamic Frameworks to Fill technology creates a sealed structural framework while interpreting, updating automatically as new information is received or interpreted. This ensures the latest information is used by the entire asset team leading to more accurate volumetric calculations and better drilling decisions.

Conformance Mapping

Implementation of this classic geologic concept uses top-down, conformable, or bottom-up conformance techniques to speed interpretation where data is poor or sparsely sampled. In this practical application of conformance mapping, the software leverages the shape of seismic surfaces to guide the mapping of well-top surfaces. Geoscientists can quickly build very high-resolution structural frameworks by combining the horizontal resolution of seismic horizons with the very high vertical resolution of well-log data.
Interactive Horizontal Well-log Correlation
The software facilitates interactive correlations between a predicted curve and real-time LWD measurements from the drilling well in the visual context of interpreted surfaces and seismic data. The interactive workflow can provide a better understanding of the stratigraphic position of the drilling well.

Traditional Geophysical Interpretation Tools
- Synthetic generation (Well tie workflow)
- Seismic volume attributes and data enhancement on 2D and 3D seismic
- Horizon and fault interpretation in section, map, and 3D views
- Horizon autotracking
- Velocity modeling and depth conversion
- Seismic horizon computations and attributes
- Prestack seismic visualization and interpretation
- Crossplot analysis for AVO and attribute analysis including ezValidator™

This software provides simple and practical tools to validate seismic character correlations in faulted and folded areas. The technology enables the interpreter to un-fault and unfold seismic to look at stratigraphy and better correlate horizons across faults.

Geoshaper Interpretation
Geoshaper “freehand” interpretation tools offer a method for sharing geologic ideas or interpreting in the absence of seismic or well data. This stratigraphic-oriented interpretation tool can be used to extend a lithology interpretation away from well control or to map basin scale ideas. Points, lines, or polygons can be converted to point sets, gridded, and contoured.

Vertical Images
The software displays XYZ-referenced vertical images in the context of seismic data and regional interpretation. These can be published as cross sections or scanned seismic images.

Prestack Data and Modeling
DecisionSpace Seismic Analysis software provides direct access to processed volumes, which can then be quickly viewed or plotted in a number of orientations (1D, 2D, 3D, map views) to understand the data quality and conditioning requirements of the prestack gathers. Prestack can be interpreted or processed to create new stack volumes. Powerful workflows allow the interpreter to model or correlate log and well data with prestack data to understand or validate geologic assumptions with seismic signatures.
Attribute and AVO Cross Plotting
The software provides workflow and analysis specifically designed for bypassed pay or fracture description. It consists of patented technologies that leverage unique autopicking and cross plotting of seismic attributes for classification and correlation with stacked seismic data to better understand fluid or fracture orientation makeup at targeted events.

Microseismic
Microseismic data visualization and fracture mapping techniques improve understanding of fracture treatment effectiveness. The data is displayed in the context of faults, horizons, log data, seismic attributes and reservoir properties in the asset team environment. Additionally, stimulated reservoir volume can be calculated quickly.

Project Designer and Knowledge Capture
Intuitive graphical flow chart tools create project workflow templates and capture workflow modeling steps in ODP or HTML. The application includes report files with capabilities of attaching documents, notes, images, and PDFs. Project Designer also includes batch file capabilities.

3D Grid Design
Flow-simulation-ready 3D grid construction provides vertical cell-walls and stair-stepped faults based on Cartesian geometry. DecisionSpace® Geosciences Earth Modeling suite uses the identical grid topology as Nexus simulator software, so the workflow from the static earth model to the dynamic simulator is seamless. Interactive tools allow users to design any shape area of interest within the boundary constraints of the structural framework.

Variogram Computation and Modeling
The application includes patented tools used to compute, model and visualize omni-directional, multi-directional, and nested variograms for continuous and discrete attributes from point sets or 3D grids. When computing the variogram, the defaults given by the application are intelligent defaults, which means that defaults are not constant for every data set. Instead users look directly at the data and provide the best defaults to use with the data available. Variogram modeling also includes an instant visual validation map showing the effect of the variogram model on the model in a live-interactive mode.

Facies Trend Computation and Modeling
Powerful workflows create geographically varying 3D lithology proportion volumes from well and seismic attributes, which are then used as background trends during facies simulation. Users can interactively edit copy and move individual proportion curves to better define or customize the background trend.
Stochastic Facies and Petrophysical Property Simulation
An easy and unique workflow to create multiple facies realizations and populate them with petrophysical properties is critical for modeling fluid flow. Instantaneous visual validators allow users to preview results quickly prior to execution to ensure outcomes are reliable. Also, having the ability to use multiple facies simulations linked to multiple petrophysical realizations at the same time allows these results to be used in volumetrics computations to get a more complete probability when calculating P10, P50 and P90.

Probabilistic Volumetric Computation
Application tools compute and display probability curves depicting the risk of hydrocarbon volume based on stochastic facies and petrophysical property realizations. Volumetrics can be used with gas, oil and mixed reservoirs.

Uncertainty Analysis
Conduct uncertainty analysis using tools for creating summary volumes from multiple realizations (mean, standard deviation, 1st and 2nd confidence intervals, probability above, below or between cut-offs).

Upscaling
The upscaling component is used to create coarser grids while keeping fine grid detail around critical areas like faults for use in flow simulators. Several algorithms and methods are available, including classic upscaling methods using appropriate averaging techniques for porosity and permeability, as well as dynamic flow-based permeability upscaling based upon the pressure solution obtained by flowing a single-phase fluid through the fine-grid gridblocks which comprise each coarse gridblock.